Performance versus energy consumption of hyperspectral unmixing algorithms on multi-core platforms
نویسندگان
چکیده
Hyperspectral imaging is a growing area in remote sensing in which an imaging spectrometer collects hundreds of images (at different wavelength channels) for the same area on the surface of the Earth. Hyperspectral images are extremely high-dimensional, and require on-board processing algorithms able to satisfy near real-time constraints in applications such as wildland fire monitoring, mapping of oil spills and chemical contamination, etc. One of the most widely used techniques for analyzing hyperspectral images is spectral unmixing, which allows for sub-pixel data characterization. This is particularly important since the available spatial resolution in hyperspectral images is typically of several meters, and therefore it is reasonable to assume that several spectrally pure substances (called endmembers in hyperspectral imaging terminology) can be found within each imaged pixel. There have been several efforts towards the efficient implementation of hyperspectral unmixing algorithms on architectures susceptible of being mounted onboard imaging instruments, including field programmable gate arrays (FPGAs) and graphics processing units (GPUs). While FPGAs are generally difficult to program, GPUs are difficult to adapt to onboard processing requirements in spaceborne missions due to its extremely high power consumption. In turn, with the increase in the number of cores, multi-core platforms have recently emerged as an easier to program platform compared to FPGAs, and also more tolerable radiation and power consumption requirements. However, a detailed assessment of the performance versus energy consumption of these architectures has not been conducted as of yet in the field of hyperspectral imaging, in which it is particularly important to achieve processing results in real-time. In this article, we provide a thoughtful perspective on this relevant issue and further analyze the performance versus energy consumption ratio of different processing chains for spectral unmixing when implemented on multi-core platforms.
منابع مشابه
جداسازی طیفی و مکانی تصاویر ابرطیفی با استفاده از Semi-NMF و تبدیل PCA
Unmixing of remote-sensing data using nonnegative matrix factorization has been considered recently. To improve performance, additional constraints are added to the cost function. The main challenge is to introduce constraints that lead to better results for unmixing. Correlation between bands of Hyperspectral images is the problem that is paid less attention to it in the unmixing algorithms. I...
متن کاملAn Overview of Nonlinear Spectral Unmixing Methods in the Processing of Hyperspectral Data
The hyperspectral imagery provides images in hundreds of spectral bands within different wavelength regions. This technology has increasingly applied in different fields of earth sciences, such as minerals exploration, environmental monitoring, agriculture, urban science, and planetary remote sensing. However, despite the ability of these data to detect surface features, the measured spectrum i...
متن کاملLand Cover Subpixel Change Detection using Hyperspectral Images Based on Spectral Unmixing and Post-processing
The earth is continually being influenced by some actions such as flood, tornado and human artificial activities. This process causes the changes in land cover type. Thus, for optimal management of the use of resources, it is necessary to be aware of these changes. Today’s remote sensing plays key role in geology and environmental monitoring by its high resolution, wide covering and low cost...
متن کاملGPUs versus FPGAs for Onboard Payload Compression of Remotely Sensed Hyperspectral Data
In this paper, we compare field programmable gate arrays (FPGAs) versus graphical processing units (GPUs) in the framework of (lossy) remotely sensed hyperspectral data compression by developing parallel implementations of a spectral unmixing-based compression strategy on both platforms. For the FPGA implementations, we resort to Xilinx hardware devices certified for on-board operation, while f...
متن کاملAnalysis of Hyperspectral Imagery for Oil Spill Detection Using SAM Unmixing Algorithm Techniques
Oil spill is one of major marine environmental challenges. The main impacts of this phenomenon are preventing light transmission into the deep water and oxygen absorption, which can disturb the photosynthesis process of water plants. In this research, we utilize SpecTIR airborne sensor data to extract and classify oils spill for the Gulf of Mexico Deepwater Horizon (DWH) happened in 2010. For t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EURASIP J. Adv. Sig. Proc.
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013